PÉPTIDOS ANTIMICROBIANOS: UN PANORAMA GENERAL CONTRA LA TRICOMONIASIS
Resumen
Resumen
El presente escrito muestra al parásito Trichomonas vaginalis como el agente causal de la tricomoniasis, enfermedad de transmisión sexual y como ésta se debería de considerar de gran importancia para los sistemas de salud pública. La tricomoniasis afecta tanto a mujeres como a hombres, sin embargo, frecuentemente es asintomática. Actualmente, el único tratamiento aprobado consiste en fármacos de la familia de los 5-nitroimidazoles; además, la selección de cepas de T. vaginalis resistentes a estos compuestos y los efectos secundarios adversos que producen, resaltan la necesidad de contar con alternativas de tratamiento. Ante esta problemática, el presente artículo también se plantea un panorama en torno al estudio de los péptidos antimicrobianos, los cuales podrían ser una estrategia prometedora para controlar a diferentes microorganismos patógenos. No obstante, aún son pocos los estudios del efecto microbicida de los péptidos contra T. vaginalis, por lo que enfatizamos su utilización como un área de oportunidad para su control.
Palabras clave: Péptidos antimicrobianos; tricomoniasis; resistencia microbicida.
“ANTIMICROBIAL PEPTIDES: AN OVERVIEW AGAINST TRICOMONIASIS”
Abstract
This paper highlights the parasite Trichomonas vaginalis as the etiological agent of trichomoniasis, a sexually transmitted disease, and how this disease should be of a great importance to public health systems. Trichomoniasis affects both women and men, however this infection often remains asymptomatic. Currently, the only treatment approved is 5-nitroimidazole derivatives and the emergence of T. vaginalis-resistant strains besides its side effects emphasizes the need for treatment alternatives. This minireview addresses this problem and provides an overview of recent research on antimicrobial peptides, which seems to be a promising strategy to control pathogens. However, there are still few studies on the microbicidal effects of these bioactive compounds against T. vaginalis, so we attract attention to antimicrobial peptides used for future therapeutic control of trichomoniasis.Texto completo:
PDFReferencias
Referencias bibliográficas
Alalwani, S. M., Sierigk, J., Herr, C., Pinkenburg, O., Gallo, R., Vogelmeier, C., & Bals, R. (2010). The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophils. European Journal of Immunology, 40(4), 1118–1126.
Angélique, L., Frederik, W. J., Garmi, J., & Hester, D. P. L. (2015). The Potential Use of Natural and Structural Analogues of Antimicrobial Peptides in the Fight against Neglected Tropical Diseases. Molecules 2015, 20(8), 15392–15433.
Boman HG, Agerberth B, Boman A. (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun. Jul;61(7):2978-84.
Boparai, J. K., & Sharma, P. K. (2020). Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications. Protein and Peptide Letters, 27(1), 4.
Braffman, N. R., Piscotta, F. J., Hauver, J., Campbell, E. A., James Link, A., & Darst, S. A. (2019). Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Proceedings of the National Academy of Sciences of the United States of America, 116(4), 1273–1278.
Cardoso, M. H., Meneguetti, B. T., Costa, B. O., Buccini, D. F., Oshiro, K. G. N., Preza, S. L. E., Carvalho, C. M. E., Migliolo, L., & Franco, O. L. (2019). Non-Lytic Antibacterial Peptides That Translocate Through Bacterial Membranes to Act on Intracellular Targets. International Journal of Molecular Sciences 2019, 20(19), 4877.
Carratalá, J. V., Serna, N., Villaverde, A., Vázquez, E., & Ferrer-Miralles, N. (2020). Nanostructured antimicrobial peptides: The last push towards clinics. Biotechnology Advances, 44, 107603.
Cole, A. M., & Cole, A. L. (2008). REVIEW ARTICLE: Antimicrobial Polypeptides are Key Anti-HIV-1 Effector Molecules of Cervicovaginal Host Defense. American Journal of Reproductive Immunology, 59(1), 27–34.
Conrad, M. D., Gorman, A. W., Schillinger, J. A., Fiori, P. L., Arroyo, R., Malla, N., Dubey, M. L., Gonzalez, J., Blank, S., Secor, W. E., & Carlton, J. M. (2012). Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis. PLoS Neglected Tropical Diseases, 6(3).
Crosby, R. A., Charnigo, R. A., Weathers, C., Caliendo, A. M., & Shrier, L. A. (2012). Condom effectiveness against non-viral sexually transmitted infections: a prospective study using electronic daily diaries. Sexually Transmitted Infections, 88, 484–489.
da Cunha, N. B., Cobacho, N. B., Viana, J. F. C., Lima, L. A., Sampaio, K. B. O., Dohms, S. S. M., Ferreira, A. C. R., de la Fuente-Núñez, C., Costa, F. F., Franco, O. L., & Dias, S. C. (2017). The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discovery Today, 22(2), 234–248.
di Somma, A., Moretta, A., Canè, C., Cirillo, A., & Duilio, A. (2020). Antimicrobial and Antibiofilm Peptides. Biomolecules 2020, 10(4), 652.
Drayton, M., Deisinger, J. P., Ludwig, K. C., Raheem, N., Müller, A., Schneider, T., & Straus, S. K. (2021). Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action. International Journal of Molecular Sciences 2021, 22(20),11172.
Dusinska, M., Tulinska, J., el Yamani, N., Kuricova, M., Liskova, A., Rollerova, E., Rundén-Pran, E., & Smolkova, B. (2017). Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing? Food and Chemical Toxicology, 109, 797–811.
Falciani, C., Zevolini, F., Brunetti, J., Riolo, G., Gracia, R., Marradi, M., Loinaz, I., Ziemann, C., Cossío, U., Llop, J., Bracci, L., & Pini, A. (2020). Antimicrobial Peptide-Loaded Nanoparticles as Inhalation Therapy for Pseudomonas aeruginosa Infections. International Journal of Nanomedicine, 15, 1117.
Greber KE, Dawgul M. (2017) Antimicrobial Peptides Under Clinical Trials. Curr Top Med Chem.;17(5):620-628.
Gunasekera, S., Muhammad, T., Strömstedt, A. A., Rosengren, K. J., & Göransson, U. (2020). Backbone Cyclization and Dimerization of LL-37-Derived Peptides Enhance Antimicrobial Activity and Proteolytic Stability. Frontiers in Microbiology, 11.
Hernández Ceruelos A, Romero-Quezada LC, Ruvalcaba Ledezma JC, López Contreras L. (2019)Therapeutic uses of metronidazole and its side effects: an update. Eur Rev Med Pharmacol Sci. 23(1):397-401.
Hernandez-Flores, J. L., Rodriguez, M. C., Gastelum Arellanez, A., Alvarez-Morales, A., & Avila, E. E. (2015). Effect of Recombinant Prophenin 2 on the Integrity and Viability of Trichomonas vaginalis. BioMed Research International, 2015.
Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol. 2020 16;11:582779.
Huang, H. N., Chuang, C. M., Chen, J. Y., & Chieh-Yu, P. (2019). Epinecidin-1: A marine fish antimicrobial peptide with therapeutic potential against Trichomonas vaginalis infection in mice. Peptides, 112, 139–148.
Infante, V. v., Miranda-Olvera, A. D., de Leon-Rodriguez, L. M., Anaya-Velazquez, F., Rodriguez, M. C., & Avila, E. E. (2011). Effect of the antimicrobial peptide tritrpticin on the in vitro viability and growth of trichomonas vaginalis. Current Microbiology, 62(1), 301–306.
Jayawardene, D. S., & Dass, C. (1999). The effect of N-terminal acetylation and the inhibition activity of acetylated enkephalins on the aminopeptidase M-catalyzed hydrolysis of enkephalins☆. Peptides, 20(8), 963.
Kumar, P., Kizhakkedathu, J. N., & Straus, S. K. (2018a). Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules 2018, 8(1), 4.
Lee TH, Hall KN, Aguilar MI. Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure. Curr Top Med Chem. 2016;16(1):25-39.
Li, Y., Liu, T., Liu, Y., Tan, Z., Ju, Y., Yang, Y., & Dong, W. (2019). Antimicrobial activity, membrane interaction and stability of the D-amino acid substituted analogs of antimicrobial peptide W3R6. Journal of Photochemistry and Photobiology B: Biology, 200, 111645.
Lin, M. C., Lin, S. bin, Lee, S. C., Lin, C. C., Hui, C. F., & Chen, J. Y. (2010). Antimicrobial peptide of an anti-lipopolysaccharide factor modulates of the inflammatory response in RAW264.7 cells. Peptides, 31(7), 1262–1272.
Liu, Y., Sun, Y., Li, S., Liu, M., Qin, X., Chen, X., & Lin, Y. (2020). Tetrahedral framework nucleic acids deliver antimicrobial peptides with improved effects and less susceptibility to bacterial degradation. Nano Letters, 20(5), 3602–3610.
Madanchi, H., Khalaj, V., Jang, S., Shabani, A. A., Ebrahimi Kiasari, R., Seyed Mousavi, S. J., Kazemi Sealani, S., & Sardari, S. (2019). AurH1: a new heptapeptide derived from Aurein1.2 antimicrobial peptide with specific and exclusive fungicidal activity. Journal of Peptide Science, 25(7), e3175.
Madanchi, H., Shoushtari, M., Kashani, H. H., & Sardari, S. (2020). Antimicrobial peptides of the vaginal innate immunity and their role in the fight against sexually transmitted diseases. New Microbes and New Infections, 34, 100627.
Makowski, M., Silva, Í. C., do Amaral, C. P., Gonçalves, S., & Santos, N. C. (2019). Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery. Pharmaceutics 2019, 11(11), 588.
Mehta, D., Anand, P., Kumar, V., Joshi, A., Mathur, D., Singh, S., Tuknait, A., Chaudhary, K., Gautam, S. K., Gautam, A., Varshney, G. C., & Raghava, G. P. S. (2014). ParaPep: a web resource for experimentally validated antiparasitic peptide sequences and their structures. Database, 2014, 1–7.
Mendez-Figueroa, H., & Anderson, B. (2014). Vaginal innate immunity: alteration during pregnancy and its impact on pregnancy outcomes. Http://Dx.Doi.Org/10.1586/Eog.11.63, 6(6), 629–641.
Mutwiri, G. K., Henk, W. G., Enright, F. M., & Corbeil, L. B. (2000). Effect of the Antimicrobial Peptide, d-Hecate, on Trichomonads. 86(6), 1355–1359.
Najafi, A., Chaechi Nosrati, M. R., Ghasemi, E., Navi, Z., Yousefi, A., Majidiani, H., Ghaneialvar, H., Sayehmiri, K., de la Luz Galvan-Ramirez, M., & Fakhar, M. (2019). Is there association between Trichomonas vaginalis infection and prostate cancer risk?: A systematic review and meta-analysis. Microbial Pathogenesis, 137, 103752.
Neshani, A., Zare, H., Akbari Eidgahi, M. R., Khaledi, A., & Ghazvini, K. (2019). Epinecidin-1, a highly potent marine antimicrobial peptide with anticancer and immunomodulatory activities. BMC Pharmacology and Toxicology, 20(1), 1–11.
Nordström, R., & Malmsten, M. (2017). Delivery systems for antimicrobial peptides. Advances in Colloid and Interface Science, 242, 17–34.
Pan, C. Y., Chen, J. Y., Lin, T. L., & Lin, C. H. (2009a). In vitro activities of three synthetic peptides derived from epinecidin-1 and an anti-lipopolysaccharide factor against Propionibacterium acnes, Candida albicans, and Trichomonas vaginalis. Peptides, 30(6), 1058–1068.
Papanastasiou, E. A., Hua, Q., Sandouk, A., Son, U. H., Christenson, A. J., van Hoek, M. L., & Bishop, B. M. (2009). Role of acetylation and charge in antimicrobial peptides based on human β-defensin-3. APMIS, 117(7), 492–499.
Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC. (2000) Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci U S A. 18;97(15):8245-50.
Poole, D. N., & McClelland, R. S. (2013). Global epidemiology of Trichomonas vaginalis. Sexually Transmitted Infections, 89(6), 418–422.
Rivas, L., & Rojas, V. (2019). Cyanobacterial peptides as a tour de force in the chemical space of antiparasitic agents. Archives of Biochemistry and Biophysics, 664, 24–39.
Rowley, J., Hoorn, S. vander, Korenromp, E., Low, N., Unemo, M., Abu-Raddad, L. J., Chico, R. M., Smolak, A., Newman, L., Gottlieb, S., Thwin, S. S., Broutet, N., & Taylor, M. M. (2019). Chlamydia, gonorrhoea, trichomoniasis and syphilis: Global prevalence and incidence estimates, 2016. Bulletin of the World Health Organization, 97(8).
Roy, R. N., Lomakin, I. B., Gagnon, M. G., & Steitz, T. A. (2015). The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin. Nature Structural & Molecular Biology 2015 22:6, 22(6), 466–469.
Sabiá, E. F., Menezes, L. F. S., de Araújo, I. F. S., & Schwartz, E. F. (2019). Natural Occurrence in Venomous Arthropods of Antimicrobial Peptides Active against Protozoan Parasites. Toxins 2019, 11(10),563.
Savoia D, Donalisio M, Civra A, Salvadori S, Guerrini R. (2010) In vitro activity of dermaseptin S1 derivatives against genital pathogens. APMIS 118: 674–80.
Schwebke, J. R., & Burgess, D. (2004). Trichomoniasis. Clinical Microbiology Reviews, 17(4), 794.
Silver, B. J., Guy, R. J., Kaldor, J. M., Jamil, M. S., & Rumbold, A. R. (2014). Trichomonas vaginalis as a cause of perinatal morbidity: A systematic review and Meta-analysis. Sexually Transmitted Diseases, 41(6), 369–376.
Thomsen, T. T., Mendel, H. C., Al-mansour, W., Oddo, A., Løbner-olesen, A., & Hansen, P. R. (2020). Analogues of a Cyclic Antimicrobial Peptide with a Flexible Linker Show Promising Activity against Pseudomonas aeruginosa and Staphylococcus aureus. Antibiotics 2020, 9(7), 366.
Ting, D. S. J., Beuerman, R. W., Dua, H. S., Lakshminarayanan, R., & Mohammed, I. (2020). Strategies in Translating the Therapeutic Potentials of Host Defense Peptides. Frontiers in Immunology, 11, 983.
Torrent, M., Pulido, D., Rivas, L., & Andreu, D. (2012). Antimicrobial Peptide Action on Parasites. Current Drug Targets, 13(9), 1138–1147.
Umerska, A., Cassisa, V., Matougui, N., Joly-Guillou, M. L., Eveillard, M., & Saulnier, P. (2016). Antibacterial action of lipid nanocapsules containing fatty acids or monoglycerides as co-surfactants. European Journal of Pharmaceutics and Biopharmaceutics, 108, 100–110.
van der Pol, B., Williams, J. A., Orr, D. P., Batteiger, B. E., & Fortenberry, J. D. (2005). Prevalence, incidence, natural history, and response to treatment of Trichomonas vaginalis infection among adolescent women. Journal of Infectious Diseases, 192(12), 2039–2044.
Workowski, K. A. (2021). Sexually Transmitted Infections Treatment Guidelines, 2021.
Yang, H., Fu, J., Zhao, Y., Shi, H., Hu, H., & Wang, H. (2017). Escherichia coli PagP Enzyme-Based De Novo Design and In Vitro Activity of Antibacterial Peptide LL-37. Medical Science Monitor, 23, 2558–2564.
Yang, S., Zhao, W., Wang, H., Wang, Y., Li, J., & Wu, X. (2018). Trichomonas vaginalis infection-associated risk of cervical cancer: A meta-analysis. European Journal of Obstetrics and Gynecology and Reproductive Biology, 228, 166–173.
Zairi, A., Tangy, F., Ducos-Galand, M., Alonso, J. M., & Hani, K. (2007). Susceptibility of Neisseria gonorrhoeae to antimicrobial peptides from amphibian skin, dermaseptin, and derivatives. Diagnostic Microbiology and Infectious Disease, 57(3), 319–324.
Zhang, Q. Y., Yan, Z. bin, Meng, Y. M., Hong, X. Y., Shao, G., Ma, J. J., Cheng, X. R., Liu, J., Kang, J., & Fu, C. Y. (2021a). Antimicrobial peptides: mechanism of action, activity, and clinical potential. Military Medical Research 2021 8:1, 8(1), 1–25.
Enlaces refback
- No hay ningún enlace refback.
Naturaleza y Tecnología, revista electrónica de la División de Ciencias Naturales y Exactas del campus Guanajuato, Universidad de Guanajuato. En ella se reciben para su revisión y arbitraje, artículos originales de investigación, artículos de revisión sobre temas actuales de investigación, así como ensayos sobre diversas temáticas del mundo científico y académico en las áreas de la química, matemáticas, ingeniería, astronomía, biología y farmacia, dentro del ámbito que comprenden las ciencias naturales y exactas, siendo requerido que no hayan sido publicadas o en proceso de publicación en otras revistas. Cuenta también con un Facebook de notas científicas de actualidad como apoyo a la actividad académica de la comunidad universitaria y para conocimiento del público en general como parte de un programa de divulgación científica y tecnológica.
.